Algebraic Geometry Lecture 31 – Sheafification Joe $Grant^1$

Let X be a topological space.

Definition. A presheaf \mathcal{F} of rings on X is:

- (1) for every open subset $U \subseteq X$, a ring $\mathcal{F}(U)$;
- (2) for every inclusion $V \subseteq U$ a ring homomorphism $\rho_{U,V} : \mathcal{F}(U) \to \mathcal{F}(V)$

such that

- (1) $\mathcal{F}(\emptyset) = 0$
- (2) $\rho_{U,U} = \operatorname{id}_{\mathcal{F}(U)}$
- (3) $W \subseteq V \subseteq U$ all open, then $\rho_{U,W} = \rho_{V,W}\rho_{U,V}$.

We call $\rho_{U,V}$ the restriction maps, and for $s \in \mathcal{F}(U)$ we sometimes write $s \mid_V$ for $\rho_{U,V}(s)$. We call the elements of $\mathcal{F}(U)$ the sections of \mathcal{F} over U, and we sometimes write $\Gamma(U, \mathcal{F})$ for $\mathcal{F}(U)$.

Example. Let $X = \{x_1, x_2\}$ with the discrete topology, i.e. all subsets are open. We write $X_i = \{x_i\}.$

We define some presheaves on X.

•
$$\mathcal{F}_1 : \mathcal{F}_1(X_i) = \mathbb{Z} \quad (1 \le i \le 2)$$

 $\mathcal{F}_1(X) = \mathbb{Z}$
 $\rho_{U,V}^{\mathcal{F}_1} = 0 \quad \text{for } U \ne V.$
• $\mathcal{F}_2 : \mathcal{F}_2(X_i) = \mathbb{Z} \quad (1 \le i \le 2)$
 $\mathcal{F}_2(X) = \mathbb{Z}$
 $\rho_{UV}^{\mathcal{F}_2} = \operatorname{id}_{\mathbb{Z}} \quad \text{for } V \ne \emptyset.$

It's easy to see that \mathcal{F}_1 and \mathcal{F}_2 are presheaves.

A sheaf is "a presheaf whose sections are determined by local data."

Definition. A presheaf \mathcal{F} on X is a sheaf if, for any open $U \subseteq X$, and any open covering $\{V_i\}$ of U,

- (4) if, for $s \in \mathcal{F}(U)$, $s \mid_{V_i} = 0$, then s = 0;
- (5) if $s_i \in \mathcal{F}(V_i)$ such that for all $i, j, s_i \mid_{V_i \cap V_j} = s_j \mid_{V_i \cap V_j}$, then there exists $s \in \mathcal{F}(U)$ such that $s \mid_{V_i} = s_i$ for every i.

Note that $(4) \Rightarrow$ the s in (5) is unique.

- **Example.** \mathcal{F}_1 is not a sheaf because (4) fails: $2 \in \mathcal{F}_1(X), 2 \mid_{X_i} = 0$ for all i, but $2 \neq 0$.
 - \mathcal{F}_2 is not a sheaf as (5) fails: $2 \in \mathcal{F}_2(X_1), 3 \in \mathcal{F}_2(X_2)$, but there is no $s \in \mathcal{F}_2(X) = \mathbb{Z}$ such that $s \mid_{X_1} = s = 2$ and $s \mid_{X_2} = s = 3$.

Example. Let

$$\mathcal{F}_3 : \mathcal{F}_3(X_i) = \mathbb{Z} \quad (1 \le i \le 2)$$
$$\mathcal{F}_3(X) = \mathbb{Z} \oplus \mathbb{Z}$$
$$\rho_{X,X_1} = \pi_1 : \mathbb{Z} \oplus \mathbb{Z} \to \mathbb{Z} : (m,n) \mapsto m$$
$$\rho_{X,X_2} = \pi_2 : \mathbb{Z} \oplus \mathbb{Z} \to \mathbb{Z} : (m,n) \mapsto n.$$

Then \mathcal{F}_3 is a sheaf. (We'll see later that it's a sheafification of \mathcal{F}_2 .)

¹Typed by Lee Butler based on a talk by Joey G.

Definition. If \mathcal{F} is a presheaf on X, and $P \in X$, then we define the stalk \mathcal{F}_P of \mathcal{F} at P to be the direct limit of the rings $\mathcal{F}(U)$ for all open $U \ni P$, via the restriction maps.

Unraveling this definition we see that an element of \mathcal{F}_P is represented by a pair $\langle U, s \rangle$ where $U \ni P$ is open, $s \in \mathcal{F}(U)$, and

$$\langle U, s \rangle \sim \langle V, t \rangle$$

if and only if there exists some open set $W \subseteq U \cap V$, $P \in W$, such that $s \mid_W = t \mid_W$. We call elements of \mathcal{F}_P germs of sections of \mathcal{F} at the point P.

Example. As we have given X the discrete topology,

$$\mathcal{F}_{x_i} = \mathcal{F}(X_i) \quad (1 \leqslant i \leqslant 2)$$

and germs are just sections for $\mathcal{F} = \mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_3$.

So the stalks here look uninteresting, but we'll see later that we can still learn something from looking at them.

Thinking of a sheaf as a (contravariant) functor

$$\mathcal{F}: \operatorname{Top}(X)^{\operatorname{op}} \to \operatorname{Rings}$$

suggests the following definition.

Definition. If \mathcal{F}, \mathcal{G} are presheaves on X, a morphism $\varphi : \mathcal{F} \to \mathcal{G}$ consists of a ring homomorphism

$$\varphi(U): \mathcal{F}(U) \to \mathcal{G}(U)$$

for each open U such that whenever $V \subseteq U$ is open, the diagram

$$\begin{array}{c|c} \mathcal{F}(U) \xrightarrow{\varphi(U)} \mathcal{G}(U) \\ \rho_{U,V}^{\mathcal{F}} & & & & \\ \rho_{U,V}^{\mathcal{F}} & & & & \\ \mathcal{F}(V) \xrightarrow{\varphi(V)} \mathcal{G}(V) \end{array}$$

commutes. I.e.

$$\rho_{U,V}^{\mathcal{G}}\varphi(U)(s) = \varphi(V)\rho_{U,V}^{\mathcal{F}}(s),$$

or " $\rho \varphi = \varphi \rho$ ".

A morphism of sheaves is just a morphism of the underlying presheaves. An isomorphism is just a morphism with a two-sided inverse.

Lemma. For any $P \in X$, a morphism $\varphi : \mathcal{F} \to \mathcal{G}$ of presheaves on X induces morphisms $\varphi_P : \mathcal{F}_P \to \mathcal{G}_P$ on the stalks, sending

$$\langle U, s \rangle \to \langle U, \varphi(U)(s) \rangle.$$

Proof. Suppose $\langle U, s \rangle \sim \langle V, t \rangle$. We want $\langle U, \varphi(U)(s) \rangle \sim \langle V, \varphi(V)(t) \rangle$. By definition of ~ there exists $W \subseteq U \cap V$, $P \in W$ such that $s \mid_{W} = t \mid_{W}$. Then

$$\begin{split} \rho_{U,W}^{\mathcal{G}}(\varphi(U)(s)) &= \varphi(W)\rho_{U,W}^{\mathcal{F}}(s) \\ &= \varphi(W)(s\mid_W) \\ &= \varphi(W)(t\mid_W) \\ &= \varphi(W)\rho_{V,W}^{\mathcal{F}}(t) \\ &= \rho_{V,W}^{\mathcal{G}}(\varphi(V)(t)). \end{split}$$